A generalization of a generic theorem in the theory of cardinal invariants of topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 1, pp. 177-187
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The main goal of this paper is to establish a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related to the well-known Arhangel'skii's inequality: If $X$ is a $T_2$-space, then $|X|\leq 2^{L(X)\chi (X)}$. Moreover, we will show relative versions of three well-known cardinal inequalities.
@article{CMUC_2007__48_1_a13,
author = {Ram{\'\i}rez-P\'aramo, Alejandro and Tapia-Bonilla, No\'e Trinidad},
title = {A generalization of a generic theorem in the theory of cardinal invariants of topological spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {177--187},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {2007},
mrnumber = {2338838},
zbl = {1199.54034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a13/}
}
TY - JOUR AU - Ramírez-Páramo, Alejandro AU - Tapia-Bonilla, Noé Trinidad TI - A generalization of a generic theorem in the theory of cardinal invariants of topological spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 SP - 177 EP - 187 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a13/ LA - en ID - CMUC_2007__48_1_a13 ER -
%0 Journal Article %A Ramírez-Páramo, Alejandro %A Tapia-Bonilla, Noé Trinidad %T A generalization of a generic theorem in the theory of cardinal invariants of topological spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2007 %P 177-187 %V 48 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a13/ %G en %F CMUC_2007__48_1_a13
Ramírez-Páramo, Alejandro; Tapia-Bonilla, Noé Trinidad. A generalization of a generic theorem in the theory of cardinal invariants of topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 1, pp. 177-187. http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a13/