Intersections of minimal prime ideals in the rings of continuous functions
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 623-632
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A space $X$ is called $\mu $-compact by M. Mandelker if the intersection of all free maximal ideals of $C(X)$ coincides with the ring $C_K(X)$ of all functions in $C(X)$ with compact support. In this paper we introduce $\phi $-compact and $\phi '$-compact spaces and we show that a space is $\mu $-compact if and only if it is both $\phi $-compact and $\phi '$-compact. We also establish that every space $X$ admits a $\phi $-compactification and a $\phi '$-compactification. Examples and counterexamples are given.
Classification :
46E25, 46J20, 54C40
Keywords: minimal prime ideal; $P$-space; $F$-space; $\mu$-compact space; $\phi $-compact space; $\phi '$-compact space; round subset; almost round subset; nearly round subset
Keywords: minimal prime ideal; $P$-space; $F$-space; $\mu$-compact space; $\phi $-compact space; $\phi '$-compact space; round subset; almost round subset; nearly round subset
@article{CMUC_2006__47_4_a7,
author = {Ghosh, Swapan Kumar},
title = {Intersections of minimal prime ideals in the rings of continuous functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {623--632},
publisher = {mathdoc},
volume = {47},
number = {4},
year = {2006},
mrnumber = {2337417},
zbl = {1150.54018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a7/}
}
TY - JOUR AU - Ghosh, Swapan Kumar TI - Intersections of minimal prime ideals in the rings of continuous functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2006 SP - 623 EP - 632 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a7/ LA - en ID - CMUC_2006__47_4_a7 ER -
Ghosh, Swapan Kumar. Intersections of minimal prime ideals in the rings of continuous functions. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 623-632. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a7/