More than a 0-point
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 617-621.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

\font\tenscr = rsfs10 \font\sevenscr = rsfs7 \font\fivescr = rsfs5 \textfont14=\tenscr \scriptfont14=\sevenscr \scriptscriptfont14=\fivescr \def\scr{\fam14} We construct in ZFC an ultrafilter $\scr U \in \Bbb N^{\ast}$ such that for every one-to-one function $f : \Bbb N\rightarrow \Bbb N$ there exists $U\in \scr U$ with $f[U]$ in the summable ideal, i.e. the sum of reciprocals of its elements converges. This strengthens Gryzlov's result concerning the existence of $0$-points.
Classification : 54D40, 54G99
Keywords: ultrafilter; $0$-point; summable ideal; linked family
@article{CMUC_2006__47_4_a6,
     author = {Fla\v{s}kov\'a, Jana},
     title = {More than a 0-point},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {617--621},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2006},
     mrnumber = {2337416},
     zbl = {1150.54025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a6/}
}
TY  - JOUR
AU  - Flašková, Jana
TI  - More than a 0-point
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 617
EP  - 621
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a6/
LA  - en
ID  - CMUC_2006__47_4_a6
ER  - 
%0 Journal Article
%A Flašková, Jana
%T More than a 0-point
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 617-621
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a6/
%G en
%F CMUC_2006__47_4_a6
Flašková, Jana. More than a 0-point. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 617-621. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a6/