Weak orderability of some spaces which admit a weak selection
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 609-615
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that if a Hausdorff topological space $X$ satisfies one of the following properties: \noindent a) $X$ has a countable, discrete dense subset and $X^2$ is hereditarily collectionwise Hausdorff; \noindent b) $X$ has a discrete dense subset and admits a countable base; \noindent then the existence of a (continuous) weak selection on $X$ implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.
Classification :
54C65, 54D15, 54D70, 54E35, 54F05
Keywords: weak (continuous) selection; weak orderability; Vietoris topology; dense countable subset; isolated point; countable base; collectionwise Hausdorff space
Keywords: weak (continuous) selection; weak orderability; Vietoris topology; dense countable subset; isolated point; countable base; collectionwise Hausdorff space
@article{CMUC_2006__47_4_a5,
author = {Costantini, Camillo},
title = {Weak orderability of some spaces which admit a weak selection},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {609--615},
publisher = {mathdoc},
volume = {47},
number = {4},
year = {2006},
mrnumber = {2337415},
zbl = {1150.54020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a5/}
}
TY - JOUR AU - Costantini, Camillo TI - Weak orderability of some spaces which admit a weak selection JO - Commentationes Mathematicae Universitatis Carolinae PY - 2006 SP - 609 EP - 615 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a5/ LA - en ID - CMUC_2006__47_4_a5 ER -
Costantini, Camillo. Weak orderability of some spaces which admit a weak selection. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 609-615. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a5/