Spaces of continuous characteristic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 599-608.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.
Classification : 54C35, 54D20, 54F05
Keywords: $C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space
@article{CMUC_2006__47_4_a4,
     author = {Buzyakova, Raushan Z.},
     title = {Spaces of continuous characteristic functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {599--608},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2006},
     mrnumber = {2337414},
     zbl = {1150.54017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a4/}
}
TY  - JOUR
AU  - Buzyakova, Raushan Z.
TI  - Spaces of continuous characteristic functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 599
EP  - 608
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a4/
LA  - en
ID  - CMUC_2006__47_4_a4
ER  - 
%0 Journal Article
%A Buzyakova, Raushan Z.
%T Spaces of continuous characteristic functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 599-608
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a4/
%G en
%F CMUC_2006__47_4_a4
Buzyakova, Raushan Z. Spaces of continuous characteristic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 599-608. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a4/