Supremum properties of Galois-type connections
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 569-583.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In a former paper, motivated by a recent theory of relators (families of relations), we have investigated increasingly regular and normal functions of one preordered set into another instead of Galois connections and residuated mappings of partially ordered sets. A function $f$ of one preordered set $X$ into another $Y$ has been called \smallskip (1) increasingly \,$g$-normal, for some function $g$ of $Y$ into $X$, if for any $x\in X$ and $y\in Y$ we have $f(x)\leq y$ if and only if $x\leq g(y)$; \smallskip (2) increasingly $\varphi $-regular, for some function $\varphi$ of $X$ into itself, if for any $x_{1}, x_{2}\in X$ we have $x_{1}\leq \varphi (x_{2})$ if and only if $f(x_{1})\leq f(x_{2})$. \smallskip In the present paper, we shall prove that if $f$ is an increasingly regular function of $X$ onto $Y$, or $f$ is an increasingly normal function of $X$ into $Y$, then $f[\sup (A)]\subset \sup (f[A])$ for all $A\subset X$. Moreover, we shall also prove some more delicate, but less important supremum properties of such functions.
Classification : 03E30, 04A05, 06A06, 06A15, 54E15
Keywords: preordered sets; Galois connections (residuated mappings); supremum properties
@article{CMUC_2006__47_4_a2,
     author = {Sz\'az, \'Arp\'ad},
     title = {Supremum properties of {Galois-type} connections},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {569--583},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2006},
     mrnumber = {2337412},
     zbl = {1150.06300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a2/}
}
TY  - JOUR
AU  - Száz, Árpád
TI  - Supremum properties of Galois-type connections
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 569
EP  - 583
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a2/
LA  - en
ID  - CMUC_2006__47_4_a2
ER  - 
%0 Journal Article
%A Száz, Árpád
%T Supremum properties of Galois-type connections
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 569-583
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a2/
%G en
%F CMUC_2006__47_4_a2
Száz, Árpád. Supremum properties of Galois-type connections. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 569-583. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a2/