Representation of bilinear forms in non-Archimedean Hilbert space by linear operators
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 695-705.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if $\phi $ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then $\phi $ is representable by a unique self-adjoint (possibly unbounded) operator $A$.
Classification : 46C99, 46S10, 47S10
Keywords: non-Archimedean Hilbert space; non-Archimedean bilinear form; unbounded operator; unbounded bilinear form; bounded bilinear form; self-adjoint operator
@article{CMUC_2006__47_4_a13,
     author = {Diagana, Toka},
     title = {Representation of bilinear forms in {non-Archimedean} {Hilbert} space by linear operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {695--705},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2006},
     mrnumber = {2337423},
     zbl = {1150.47408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a13/}
}
TY  - JOUR
AU  - Diagana, Toka
TI  - Representation of bilinear forms in non-Archimedean Hilbert space by linear operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 695
EP  - 705
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a13/
LA  - en
ID  - CMUC_2006__47_4_a13
ER  - 
%0 Journal Article
%A Diagana, Toka
%T Representation of bilinear forms in non-Archimedean Hilbert space by linear operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 695-705
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a13/
%G en
%F CMUC_2006__47_4_a13
Diagana, Toka. Representation of bilinear forms in non-Archimedean Hilbert space by linear operators. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 695-705. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a13/