On free modes
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 561-568.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove a theorem describing the equational theory of all modes of a fixed type. We use this result to show that a free mode with at least one basic operation of arity at least three, over a set of cardinality at least two, does not satisfy identities selected by 'A. Szendrei in {\it Identities satisfied by convex linear forms\/}, Algebra Universalis {\bf 12} (1981), 103--122, that hold in any subreduct of a semimodule over a commutative semiring. This gives a negative answer to the question raised by A. Romanowska: Is it true that each mode is a subreduct of some semimodule over a commutative semiring?
Classification : 03C05, 03F07, 08B05, 08B20
Keywords: modes; Szendrei modes; subreducts; semimodules; equational theory
@article{CMUC_2006__47_4_a1,
     author = {Stronkowski, Micha{\l} Marek},
     title = {On free modes},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {561--568},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2006},
     mrnumber = {2337411},
     zbl = {1150.08304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a1/}
}
TY  - JOUR
AU  - Stronkowski, Michał Marek
TI  - On free modes
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 561
EP  - 568
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a1/
LA  - en
ID  - CMUC_2006__47_4_a1
ER  - 
%0 Journal Article
%A Stronkowski, Michał Marek
%T On free modes
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 561-568
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a1/
%G en
%F CMUC_2006__47_4_a1
Stronkowski, Michał Marek. On free modes. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/CMUC_2006__47_4_a1/