An infinitary version of Sperner's Lemma
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 503-514
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.
Classification :
54F45, 55M20, 57N20
Keywords: simplex; colouring; covering dimension; point-finite; fixed point; algebraic topology
Keywords: simplex; colouring; covering dimension; point-finite; fixed point; algebraic topology
@article{CMUC_2006__47_3_a12,
author = {Hohti, Aarno},
title = {An infinitary version of {Sperner's} {Lemma}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {503--514},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {2006},
mrnumber = {2281012},
zbl = {1150.57311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a12/}
}
Hohti, Aarno. An infinitary version of Sperner's Lemma. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 503-514. http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a12/