$f$-derivations on rings and modules
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 379-390
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $\tau $ is a hereditary torsion theory on $\bold{Mod}_{R}$ and $Q_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_{\tau }$-derivation $d_{\tau }:Q_{\tau }(M)\rightarrow Q_{\tau }(N)$ when $\tau $ is a differential torsion theory on $\bold{Mod}_{R}$. Dually, it is shown that if $\tau $ is cohereditary and $C_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_{\tau }$-derivation $d_{\tau }:C_{\tau }(M)\rightarrow C_{\tau }(N)$.
Classification :
16D99, 16S90, 16W25
Keywords: torsion theory; differential filter; localization; colocalization; $f$-derivation
Keywords: torsion theory; differential filter; localization; colocalization; $f$-derivation
@article{CMUC_2006__47_3_a1,
author = {Bland, Paul E.},
title = {$f$-derivations on rings and modules},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {379--390},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {2006},
mrnumber = {2281001},
zbl = {1106.16038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a1/}
}
Bland, Paul E. $f$-derivations on rings and modules. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 379-390. http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a1/