$f$-derivations on rings and modules
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 379-390.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $\tau $ is a hereditary torsion theory on $\bold{Mod}_{R}$ and $Q_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_{\tau }$-derivation $d_{\tau }:Q_{\tau }(M)\rightarrow Q_{\tau }(N)$ when $\tau $ is a differential torsion theory on $\bold{Mod}_{R}$. Dually, it is shown that if $\tau $ is cohereditary and $C_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_{\tau }$-derivation $d_{\tau }:C_{\tau }(M)\rightarrow C_{\tau }(N)$.
Classification : 16D99, 16S90, 16W25
Keywords: torsion theory; differential filter; localization; colocalization; $f$-derivation
@article{CMUC_2006__47_3_a1,
     author = {Bland, Paul E.},
     title = {$f$-derivations on rings and modules},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {379--390},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2006},
     mrnumber = {2281001},
     zbl = {1106.16038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a1/}
}
TY  - JOUR
AU  - Bland, Paul E.
TI  - $f$-derivations on rings and modules
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 379
EP  - 390
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a1/
LA  - en
ID  - CMUC_2006__47_3_a1
ER  - 
%0 Journal Article
%A Bland, Paul E.
%T $f$-derivations on rings and modules
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 379-390
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a1/
%G en
%F CMUC_2006__47_3_a1
Bland, Paul E. $f$-derivations on rings and modules. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 3, pp. 379-390. http://geodesic.mathdoc.fr/item/CMUC_2006__47_3_a1/