On existence and regularity of solutions to a class of generalized stationary Stokes problem
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 2, pp. 241-264.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the existence of weak solutions and their smoothness properties for a generalized Stokes problem. The generalization is twofold: the Laplace operator is replaced by a general second order linear elliptic operator in divergence form and the ``pressure'' gradient $\nabla p$ is replaced by a linear operator of first order.
Classification : 35B65, 35D05, 35D10, 35J55, 35Q30, 35Q35, 76D03, 76D07
Keywords: generalized Stokes problem; weak solutions; regularity up to the boundary
@article{CMUC_2006__47_2_a4,
     author = {Huy, Nguyen Duc and Star\'a, Jana},
     title = {On existence and regularity of solutions  to a class of generalized stationary {Stokes} problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {241--264},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2006},
     mrnumber = {2241530},
     zbl = {1150.76010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a4/}
}
TY  - JOUR
AU  - Huy, Nguyen Duc
AU  - Stará, Jana
TI  - On existence and regularity of solutions  to a class of generalized stationary Stokes problem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 241
EP  - 264
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a4/
LA  - en
ID  - CMUC_2006__47_2_a4
ER  - 
%0 Journal Article
%A Huy, Nguyen Duc
%A Stará, Jana
%T On existence and regularity of solutions  to a class of generalized stationary Stokes problem
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 241-264
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a4/
%G en
%F CMUC_2006__47_2_a4
Huy, Nguyen Duc; Stará, Jana. On existence and regularity of solutions  to a class of generalized stationary Stokes problem. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 2, pp. 241-264. http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a4/