On the boundary of 2-dimensional ideal polyhedra
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 2, pp. 359-367
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is proved that for every two points in the visual boundary of the universal covering of a $2$-dimensional ideal polyhedron, there is an infinity of paths joining them.
@article{CMUC_2006__47_2_a11,
author = {Vrontakis, Emmanuel},
title = {On the boundary of 2-dimensional ideal polyhedra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {359--367},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2006},
mrnumber = {2241537},
zbl = {1150.57301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a11/}
}
Vrontakis, Emmanuel. On the boundary of 2-dimensional ideal polyhedra. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 2, pp. 359-367. http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a11/