On rings close to regular and $p$-injectivity
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 2, pp. 203-212.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The following results are proved for a ring $A$: (1) If $A$ is a fully right idempotent ring having a classical left quotient ring $Q$ which is right quasi-duo, then $Q$ is a strongly regular ring; (2) $A$ has a classical left quotient ring $Q$ which is a finite direct sum of division rings iff $A$ is a left $\operatorname{TC}$-ring having a reduced maximal right ideal and satisfying the maximum condition on left annihilators; (3) Let $A$ have the following properties: (a) each maximal left ideal of $A$ is either a two-sided ideal of $A$ or an injective left $A$-module; (b) for every maximal left ideal $M$ of $A$ which is a two-sided ideal, $A/M_A$ is flat. Then, $A$ is either strongly regular or left self-injective regular with non-zero socle; (4) $A$ is strongly regular iff $A$ is a semi-prime left or right quasi-duo ring such that for every essential left ideal $L$ of $A$ which is a two-sided ideal, $A/L_A$ is flat; (5) $A$ prime ring containing a reduced minimal left ideal must be a division ring; (6) A commutative ring is quasi-Frobenius iff it is a $\operatorname{YJ}$-injective ring with maximum condition on annihilators.
Classification : 16D40, 16D50, 16E50, 16N60
Keywords: strongly regular; $p$-injective; $\operatorname{YJ}$-injective; biregular; von Neumann regular
@article{CMUC_2006__47_2_a1,
     author = {Ming, Roger Yue Chi},
     title = {On rings close to regular and $p$-injectivity},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2006},
     mrnumber = {2241527},
     zbl = {1106.16003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a1/}
}
TY  - JOUR
AU  - Ming, Roger Yue Chi
TI  - On rings close to regular and $p$-injectivity
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 203
EP  - 212
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a1/
LA  - en
ID  - CMUC_2006__47_2_a1
ER  - 
%0 Journal Article
%A Ming, Roger Yue Chi
%T On rings close to regular and $p$-injectivity
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 203-212
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a1/
%G en
%F CMUC_2006__47_2_a1
Ming, Roger Yue Chi. On rings close to regular and $p$-injectivity. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/CMUC_2006__47_2_a1/