Topological structure of the space of lower semi-continuous functions
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 113-126.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\operatorname{L}(X)$ be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space $X$, where, by identifying each $f$ with the epi-graph $\operatorname{epi}(f)$, $\operatorname{L}(X)$ is regarded the subspace of the space $\operatorname{Cld}^*_F(X \times \Bbb R)$ of all closed sets in $X \times \Bbb R$ with the Fell topology. Let $$ \operatorname{LSC}(X) = \{f\in \operatorname{L}(X) \mid f(X) \cap \Bbb R \neq \emptyset, f(X)\subset (-\infty,\infty]\} \text{ and} \ \operatorname{LSC}_{\operatorname{B}}(X) = \{f \in \operatorname{L}(X) \mid f(X) \text{ is a bounded subset of $\Bbb R$}\}. $$ We show that $\operatorname{L}(X)$ is homeomorphic to the Hilbert cube $Q = [-1,1]^\Bbb N$ if and only if $X$ is second countable, locally compact and infinite. In this case, it is proved that $(\operatorname{L}(X), \operatorname{LSC}(X), \operatorname{LSC}_{\operatorname{B}}(X))$ is homeomorphic to $(\operatorname{Cone} Q, Q\times (0,1), \Sigma \times (0,1))$ (resp. $(Q,s,\Sigma)$) if $X$ is compact (resp. $X$ is non-compact), where $\operatorname{Cone} Q = (Q \times \bold I)/(Q\times \{1\})$ is the cone over $Q$, $s = (-1,1)^\Bbb N$ is the pseudo-interior, $\Sigma = \{(x_i)_{i\in \Bbb N} \in Q \mid \sup_{i\in \Bbb N}|x_i| 1\}$ is the radial-interior.
Classification : 54C35, 57N20
Keywords: space of lower semi-continuous functions; epi-graph; Fell topology; Hilbert cube; pseudo-interior; radial-interior
@article{CMUC_2006__47_1_a9,
     author = {Sakai, Katsuro and Uehara, Shigenori},
     title = {Topological structure of the space of lower semi-continuous functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {113--126},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2006},
     mrnumber = {2223971},
     zbl = {1150.57006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a9/}
}
TY  - JOUR
AU  - Sakai, Katsuro
AU  - Uehara, Shigenori
TI  - Topological structure of the space of lower semi-continuous functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 113
EP  - 126
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a9/
LA  - en
ID  - CMUC_2006__47_1_a9
ER  - 
%0 Journal Article
%A Sakai, Katsuro
%A Uehara, Shigenori
%T Topological structure of the space of lower semi-continuous functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 113-126
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a9/
%G en
%F CMUC_2006__47_1_a9
Sakai, Katsuro; Uehara, Shigenori. Topological structure of the space of lower semi-continuous functions. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 113-126. http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a9/