$G_\delta$-modification of compacta and cardinal invariants
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 95-101
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a space $X$, its $G_\delta $-subsets form a basis of a new space $X_\omega $, called the $G_\delta $-modification of $X$. We study how the assumption that the $G_\delta $-modification $X_\omega $ is homogeneous influences properties of $X$. If $X$ is first countable, then $X_\omega $ is discrete and, hence, homogeneous. Thus, $X_\omega $ is much more often homogeneous than $X$ itself. We prove that if $X$ is a compact Hausdorff space of countable tightness such that the $G_\delta $-modification of $X$ is homogeneous, then the weight $w(X)$ of $X$ does not exceed $2^\omega $ (Theorem 1). We also establish that if a compact Hausdorff space of countable tightness is covered by a family of $G_\delta $-subspaces of the weight $\leq c=2^\omega $, then the weight of $X$ is not greater than $2^\omega $ (Theorem 4). Several other related results are obtained, a few new open questions are formulated. Fedorchuk's hereditarily separable compactum of the cardinality greater than $c=2^\omega $ is shown to be $G_\delta $-homogeneous under CH. Of course, it is not homogeneous when given its own topology.
Classification :
54A25, 54B10
Keywords: weight; tightness; $G_\delta $-modification; character; Lindelöf degree; homogeneous space
Keywords: weight; tightness; $G_\delta $-modification; character; Lindelöf degree; homogeneous space
@article{CMUC_2006__47_1_a7,
author = {Arhangel'skii, A. V.},
title = {$G_\delta$-modification of compacta and cardinal invariants},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {95--101},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2006},
mrnumber = {2223969},
zbl = {1150.54004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a7/}
}
TY - JOUR AU - Arhangel'skii, A. V. TI - $G_\delta$-modification of compacta and cardinal invariants JO - Commentationes Mathematicae Universitatis Carolinae PY - 2006 SP - 95 EP - 101 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a7/ LA - en ID - CMUC_2006__47_1_a7 ER -
Arhangel'skii, A. V. $G_\delta$-modification of compacta and cardinal invariants. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 95-101. http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a7/