On sequent calculi for intuitionistic propositional logic
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 159-173
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained.
Classification :
03B20, 03B35, 03F05, 03F20
Keywords: intuitionistic logic; polynomial-space; sequent calculus; Kripke semantics
Keywords: intuitionistic logic; polynomial-space; sequent calculus; Kripke semantics
@article{CMUC_2006__47_1_a14,
author = {\v{S}vejdar, V{\'\i}t\v{e}zslav},
title = {On sequent calculi for intuitionistic propositional logic},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {159--173},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2006},
mrnumber = {2223976},
zbl = {1138.03008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a14/}
}
TY - JOUR AU - Švejdar, Vítězslav TI - On sequent calculi for intuitionistic propositional logic JO - Commentationes Mathematicae Universitatis Carolinae PY - 2006 SP - 159 EP - 173 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a14/ LA - en ID - CMUC_2006__47_1_a14 ER -
Švejdar, Vítězslav. On sequent calculi for intuitionistic propositional logic. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 159-173. http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a14/