$\Sigma $-products of paracompact Čech-scattered spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 127-140.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma$ is a $\Sigma$-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).
Classification : 54B10, 54D15, 54D20, 54G12
Keywords: $\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness
@article{CMUC_2006__47_1_a10,
     author = {Tanaka, Hidenori},
     title = {$\Sigma $-products of paracompact {\v{C}ech-scattered} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2006},
     mrnumber = {2223972},
     zbl = {1150.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a10/}
}
TY  - JOUR
AU  - Tanaka, Hidenori
TI  - $\Sigma $-products of paracompact Čech-scattered spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 127
EP  - 140
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a10/
LA  - en
ID  - CMUC_2006__47_1_a10
ER  - 
%0 Journal Article
%A Tanaka, Hidenori
%T $\Sigma $-products of paracompact Čech-scattered spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 127-140
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a10/
%G en
%F CMUC_2006__47_1_a10
Tanaka, Hidenori. $\Sigma $-products of paracompact Čech-scattered spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a10/