The maximal regular ideal of some commutative rings
Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 1950 in volume 1 of Proc. Amer. Math. Soc., B. Brown and N. McCoy showed that every (not necessarily commutative) ring $R$ has an ideal $\frak M (R)$ consisting of elements $a$ for which there is an $x$ such that $axa=a$, and maximal with respect to this property. Considering only the case when $R$ is commutative and has an identity element, it is often not easy to determine when $\frak M (R)$ is not just the zero ideal. We determine when this happens in a number of cases: Namely when at least one of $a$ or $1-a$ has a von Neumann inverse, when $R$ is a product of local rings (e.g., when $R$ is $\Bbb Z_{n}$ or $\Bbb Z_{n}[i]$), when $R$ is a polynomial or a power series ring, and when $R$ is the ring of all real-valued continuous functions on a topological space.
Classification : 10A10, 13A15, 13Fxx, 16E50, 54G10
Keywords: commutative rings; von Neumann regular rings; von Neumann local rings; Gelfand rings; polynomial rings; power series rings; rings of Gaussian integers (mod $n$); prime and maximal ideals; maximal regular ideals; pure ideals; quadratic residues; Stone-Čech compactification; $C(X)$; zerosets; cozerosets; $P$-spaces
@article{CMUC_2006__47_1_a0,
     author = {Osba, Emad Abu and Henriksen, Melvin and Alkam, Osama and Smith, F. A.},
     title = {The maximal regular ideal of some commutative rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2006},
     mrnumber = {2223962},
     zbl = {1150.13300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a0/}
}
TY  - JOUR
AU  - Osba, Emad Abu
AU  - Henriksen, Melvin
AU  - Alkam, Osama
AU  - Smith, F. A.
TI  - The maximal regular ideal of some commutative rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2006
SP  - 1
EP  - 10
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a0/
LA  - en
ID  - CMUC_2006__47_1_a0
ER  - 
%0 Journal Article
%A Osba, Emad Abu
%A Henriksen, Melvin
%A Alkam, Osama
%A Smith, F. A.
%T The maximal regular ideal of some commutative rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2006
%P 1-10
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a0/
%G en
%F CMUC_2006__47_1_a0
Osba, Emad Abu; Henriksen, Melvin; Alkam, Osama; Smith, F. A. The maximal regular ideal of some commutative rings. Commentationes Mathematicae Universitatis Carolinae, Tome 47 (2006) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/CMUC_2006__47_1_a0/