$C(X)$ can sometimes determine $X$ without $X$ being realcompact
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 711-720
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
As usual $C(X)$ will denote the ring of real-valued continuous functions on a Tychonoff space $X$. It is well-known that if $X$ and $Y$ are realcompact spaces such that $C(X)$ and $C(Y)$ are isomorphic, then $X$ and $Y$ are homeomorphic; that is $C(X)$ {\it determines\/} $X$. The restriction to realcompact spaces stems from the fact that $C(X)$ and $C(\upsilon X)$ are isomorphic, where $\upsilon X$ is the (Hewitt) realcompactification of $X$. In this note, a class of locally compact spaces $X$ that includes properly the class of locally compact realcompact spaces is exhibited such that $C(X)$ determines $X$. The problem of getting similar results for other restricted classes of generalized realcompact spaces is posed.
Classification :
46E25, 54C35, 54C40
Keywords: nearly realcompact space; fast set; SRM ideal; continuous functions with pseudocompact support; locally compact; locally pseudocompact
Keywords: nearly realcompact space; fast set; SRM ideal; continuous functions with pseudocompact support; locally compact; locally pseudocompact
@article{CMUC_2005__46_4_a9,
author = {Henriksen, Melvin and Mitra, Biswajit},
title = {$C(X)$ can sometimes determine $X$ without $X$ being realcompact},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {711--720},
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2005},
mrnumber = {2259501},
zbl = {1121.54035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/}
}
TY - JOUR AU - Henriksen, Melvin AU - Mitra, Biswajit TI - $C(X)$ can sometimes determine $X$ without $X$ being realcompact JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 711 EP - 720 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/ LA - en ID - CMUC_2005__46_4_a9 ER -
%0 Journal Article %A Henriksen, Melvin %A Mitra, Biswajit %T $C(X)$ can sometimes determine $X$ without $X$ being realcompact %J Commentationes Mathematicae Universitatis Carolinae %D 2005 %P 711-720 %V 46 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/ %G en %F CMUC_2005__46_4_a9
Henriksen, Melvin; Mitra, Biswajit. $C(X)$ can sometimes determine $X$ without $X$ being realcompact. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 711-720. http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/