$C(X)$ can sometimes determine $X$ without $X$ being realcompact
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 711-720.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

As usual $C(X)$ will denote the ring of real-valued continuous functions on a Tychonoff space $X$. It is well-known that if $X$ and $Y$ are realcompact spaces such that $C(X)$ and $C(Y)$ are isomorphic, then $X$ and $Y$ are homeomorphic; that is $C(X)$ {\it determines\/} $X$. The restriction to realcompact spaces stems from the fact that $C(X)$ and $C(\upsilon X)$ are isomorphic, where $\upsilon X$ is the (Hewitt) realcompactification of $X$. In this note, a class of locally compact spaces $X$ that includes properly the class of locally compact realcompact spaces is exhibited such that $C(X)$ determines $X$. The problem of getting similar results for other restricted classes of generalized realcompact spaces is posed.
Classification : 46E25, 54C35, 54C40
Keywords: nearly realcompact space; fast set; SRM ideal; continuous functions with pseudocompact support; locally compact; locally pseudocompact
@article{CMUC_2005__46_4_a9,
     author = {Henriksen, Melvin and Mitra, Biswajit},
     title = {$C(X)$ can sometimes determine $X$ without $X$ being realcompact},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {711--720},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2005},
     mrnumber = {2259501},
     zbl = {1121.54035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/}
}
TY  - JOUR
AU  - Henriksen, Melvin
AU  - Mitra, Biswajit
TI  - $C(X)$ can sometimes determine $X$ without $X$ being realcompact
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 711
EP  - 720
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/
LA  - en
ID  - CMUC_2005__46_4_a9
ER  - 
%0 Journal Article
%A Henriksen, Melvin
%A Mitra, Biswajit
%T $C(X)$ can sometimes determine $X$ without $X$ being realcompact
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 711-720
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/
%G en
%F CMUC_2005__46_4_a9
Henriksen, Melvin; Mitra, Biswajit. $C(X)$ can sometimes determine $X$ without $X$ being realcompact. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 711-720. http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a9/