Dimension in algebraic frames, II: Applications to frames of ideals in $C(X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 607-636.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper continues the investigation into Krull-style dimensions in algebraic frames. Let $L$ be an algebraic frame. $\operatorname{dim}(L)$ is the supremum of the lengths $k$ of sequences $p_0 p_1 \cdots $ of (proper) prime elements of $L$. Recently, Th. Coquand, H. Lombardi and M.-F. Roy have formulated a characterization which describes the dimension of $L$ in terms of the dimensions of certain boundary quotients of $L$. This paper gives a purely frame-theoretic proof of this result, at once generalizing it to frames which are not necessarily compact. This result applies to the frame $\Cal C_z(X)$ of all $z$-ideals of $C(X)$, provided the underlying Tychonoff space $X$ is Lindelöf. If the space $X$ is compact, then it is shown that the dimension of $\Cal C_z(X)$ is at most $n$ if and only if $X$ is scattered of Cantor-Bendixson index at most $n+1$. If $X$ is the topological union of spaces $X_i$, then the dimension of $\Cal C_z(X)$ is the supremum of the dimensions of the $\Cal C_z(X_i)$. This and other results apply to the frame of all $d$-ideals $\Cal C_d(X)$ of $C(X)$, however, not the characterization in terms of boundaries. An explanation of this is given within, thus marking some of the differences between these two frames and their dimensions.
Classification : 03G10, 06D22, 16P60, 54B35, 54C30
Keywords: dimension of a frame; $z$-ideals; scattered space; natural typing of open sets
@article{CMUC_2005__46_4_a2,
     author = {Mart{\'\i}nez, Jorge and Zenk, Eric R.},
     title = {Dimension in algebraic frames, {II:} {Applications} to frames of ideals in $C(X)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {607--636},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2005},
     mrnumber = {2259494},
     zbl = {1121.06009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a2/}
}
TY  - JOUR
AU  - Martínez, Jorge
AU  - Zenk, Eric R.
TI  - Dimension in algebraic frames, II: Applications to frames of ideals in $C(X)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 607
EP  - 636
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a2/
LA  - en
ID  - CMUC_2005__46_4_a2
ER  - 
%0 Journal Article
%A Martínez, Jorge
%A Zenk, Eric R.
%T Dimension in algebraic frames, II: Applications to frames of ideals in $C(X)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 607-636
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a2/
%G en
%F CMUC_2005__46_4_a2
Martínez, Jorge; Zenk, Eric R. Dimension in algebraic frames, II: Applications to frames of ideals in $C(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 607-636. http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a2/