A tree $\pi $-base for $\Bbb R^\ast$ without cofinal branches
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 721-734
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove an analogue to Dordal's result in P.L. Dordal, {\it A model in which the base-matrix tree cannot have cofinal branches\/}, J. Symbolic Logic {\bf 52} (1980), 651--664. He obtained a model of ZFC in which there is a tree $\pi$-base for $\Bbb N^{\ast}$ with no $\omega_{2}$ branches yet of height $\omega_{2}$. We establish that this is also possible for $\Bbb R^{\ast}$ using a natural modification of Mathias forcing.
Classification :
03E17, 06E15, 54A35, 54G05
Keywords: distributivity of Boolean algebras; cardinal invariants of the continuum; Stone-Čech compactification; tree $\pi$-base
Keywords: distributivity of Boolean algebras; cardinal invariants of the continuum; Stone-Čech compactification; tree $\pi$-base
@article{CMUC_2005__46_4_a10,
author = {Hern\'andez-Hern\'andez, Fernando},
title = {A tree $\pi $-base for $\Bbb R^\ast$ without cofinal branches},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {721--734},
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2005},
mrnumber = {2259502},
zbl = {1121.54057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a10/}
}
TY - JOUR AU - Hernández-Hernández, Fernando TI - A tree $\pi $-base for $\Bbb R^\ast$ without cofinal branches JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 721 EP - 734 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a10/ LA - en ID - CMUC_2005__46_4_a10 ER -
Hernández-Hernández, Fernando. A tree $\pi $-base for $\Bbb R^\ast$ without cofinal branches. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 721-734. http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a10/