Groups with the weak minimal condition for non-subnormal subgroups II
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 601-605
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a group with the property that there are no infinite descending chains of non-subnormal subgroups of $G$ for which all successive indices are infinite. The main result is that if $G$ is a locally (soluble-by-finite) group with this property then either $G$ has {\it all\/} subgroups subnormal or $G$ is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.
@article{CMUC_2005__46_4_a1,
author = {Kurdachenko, Leonid A. and Smith, Howard},
title = {Groups with the weak minimal condition for non-subnormal subgroups {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {601--605},
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2005},
mrnumber = {2259493},
zbl = {1106.20023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a1/}
}
TY - JOUR AU - Kurdachenko, Leonid A. AU - Smith, Howard TI - Groups with the weak minimal condition for non-subnormal subgroups II JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 601 EP - 605 VL - 46 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a1/ LA - en ID - CMUC_2005__46_4_a1 ER -
%0 Journal Article %A Kurdachenko, Leonid A. %A Smith, Howard %T Groups with the weak minimal condition for non-subnormal subgroups II %J Commentationes Mathematicae Universitatis Carolinae %D 2005 %P 601-605 %V 46 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a1/ %G en %F CMUC_2005__46_4_a1
Kurdachenko, Leonid A.; Smith, Howard. Groups with the weak minimal condition for non-subnormal subgroups II. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 4, pp. 601-605. http://geodesic.mathdoc.fr/item/CMUC_2005__46_4_a1/