Semivariation in $L^p$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 425-436.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose that $X$ and $Y$ are Banach spaces and that the Banach space $X\hat\otimes_\tau Y$ is their complete tensor product with respect to some tensor product topology $\tau$. A uniformly bounded $X$-valued function need not be integrable in $X\hat\otimes_\tau Y$ with respect to a $Y$-valued measure, unless, say, $X$ and $Y$ are Hilbert spaces and $\tau$ is the Hilbert space tensor product topology, in which case Grothendieck's theorem may be applied. In this paper, we take an index $1 \le p \infty$ and suppose that $X$ and $Y$ are $L^p$-spaces with $\tau_p$ the associated $L^p$-tensor product topology. An application of Orlicz's lemma shows that not all uniformly bounded $X$-valued functions are integrable in $X\hat\otimes_{\tau_p} Y$ with respect to a $Y$-valued measure in the case $1\le p 2$. For $2 p \infty$, the negative result is equivalent to the fact that not all continuous linear maps from $\ell^1$ to $\ell^p$ are $p$-summing, which follows from a result of S. Kwapien.
Classification : 28B05, 46B42, 46G10, 47B65
Keywords: absolutely $p$-summing; bilinear integration; semivariation; tensor product
@article{CMUC_2005__46_3_a5,
     author = {Jefferies, Brian and Okada, Susumu},
     title = {Semivariation in $L^p$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {425--436},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2005},
     mrnumber = {2174522},
     zbl = {1121.28013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a5/}
}
TY  - JOUR
AU  - Jefferies, Brian
AU  - Okada, Susumu
TI  - Semivariation in $L^p$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 425
EP  - 436
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a5/
LA  - en
ID  - CMUC_2005__46_3_a5
ER  - 
%0 Journal Article
%A Jefferies, Brian
%A Okada, Susumu
%T Semivariation in $L^p$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 425-436
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a5/
%G en
%F CMUC_2005__46_3_a5
Jefferies, Brian; Okada, Susumu. Semivariation in $L^p$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 425-436. http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a5/