Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 577-588.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper the special diophantine equation $\frac{q^{n}-1}{q-1}=y$ with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of $y-1$.
Classification : 11A41, 11D41, 11D45, 11D61, 11D72
Keywords: diophantine equation; Fermat and Mersenne primes; Catalan conjecture
@article{CMUC_2005__46_3_a17,
     author = {Polick\'y, Zden\v{e}k},
     title = {Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {577--588},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2005},
     mrnumber = {2174534},
     zbl = {1121.11031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a17/}
}
TY  - JOUR
AU  - Polický, Zdeněk
TI  - Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 577
EP  - 588
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a17/
LA  - en
ID  - CMUC_2005__46_3_a17
ER  - 
%0 Journal Article
%A Polický, Zdeněk
%T Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 577-588
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a17/
%G en
%F CMUC_2005__46_3_a17
Polický, Zdeněk. Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 577-588. http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a17/