Weak extent in normal spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 497-501.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $X$ is a space, then the {\it weak extent\/} $\operatorname{we}(X)$ of $X$ is the cardinal $\min \{\alpha :$ If $\Cal U$ is an open cover of $X$, then there exists $A\subseteq X$ such that $|A| = \alpha $ and $\operatorname{St}(A,\Cal U)=X\}$. In this note, we show that if $X$ is a normal space such that $|X| = \frak c$ and $\operatorname{we}(X) = \omega $, then $X$ does not have a closed discrete subset of cardinality $\frak c$. We show that this result cannot be strengthened in ZFC to get that the extent of $X$ is smaller than $\frak c$, even if the condition that $\operatorname{we}(X) = \omega $ is replaced by the stronger condition that $X$ is separable.
Classification : 54A25, 54D15, 54D40
Keywords: extent; weak extent; separable; star-Lindel"{o}f; normal
@article{CMUC_2005__46_3_a10,
     author = {Levy, Ronnie and Matveev, Mikhail},
     title = {Weak extent in normal spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {497--501},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2005},
     mrnumber = {2174527},
     zbl = {1121.54012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a10/}
}
TY  - JOUR
AU  - Levy, Ronnie
AU  - Matveev, Mikhail
TI  - Weak extent in normal spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 497
EP  - 501
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a10/
LA  - en
ID  - CMUC_2005__46_3_a10
ER  - 
%0 Journal Article
%A Levy, Ronnie
%A Matveev, Mikhail
%T Weak extent in normal spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 497-501
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a10/
%G en
%F CMUC_2005__46_3_a10
Levy, Ronnie; Matveev, Mikhail. Weak extent in normal spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 497-501. http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a10/