Weak extent in normal spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 497-501
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $X$ is a space, then the {\it weak extent\/} $\operatorname{we}(X)$ of $X$ is the cardinal $\min \{\alpha :$ If $\Cal U$ is an open cover of $X$, then there exists $A\subseteq X$ such that $|A| = \alpha $ and $\operatorname{St}(A,\Cal U)=X\}$. In this note, we show that if $X$ is a normal space such that $|X| = \frak c$ and $\operatorname{we}(X) = \omega $, then $X$ does not have a closed discrete subset of cardinality $\frak c$. We show that this result cannot be strengthened in ZFC to get that the extent of $X$ is smaller than $\frak c$, even if the condition that $\operatorname{we}(X) = \omega $ is replaced by the stronger condition that $X$ is separable.
Classification :
54A25, 54D15, 54D40
Keywords: extent; weak extent; separable; star-Lindel"{o}f; normal
Keywords: extent; weak extent; separable; star-Lindel"{o}f; normal
@article{CMUC_2005__46_3_a10,
author = {Levy, Ronnie and Matveev, Mikhail},
title = {Weak extent in normal spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {497--501},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {2005},
mrnumber = {2174527},
zbl = {1121.54012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a10/}
}
Levy, Ronnie; Matveev, Mikhail. Weak extent in normal spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 497-501. http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a10/