Extending the structural homomorphism of LCC loops
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 385-389.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A loop $Q$ is said to be left conjugacy closed if the set $A=\{L_x/x\in Q\}$ is closed under conjugation. Let $Q$ be an LCC loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$ respectively, and let $I(Q)$ be its inner mapping group, $M(Q)$ its multiplication group. By Drápal's theorem [3, Theorem 2.8] there exists a homomorphism $\Lambda : \Cal L \to I(Q)$ determined by $L_x\to R^{-1}_x L_x$. In this short note we examine different possible extensions of this $\Lambda$ and the uniqueness of these extensions.
Classification : 20D10, 20N05
Keywords: LCC loop; multiplication group; inner mapping group; homomorphism
@article{CMUC_2005__46_3_a0,
     author = {Cs\"org\"o, Piroska},
     title = {Extending the structural homomorphism of {LCC} loops},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {385--389},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2005},
     mrnumber = {2174517},
     zbl = {1106.20051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a0/}
}
TY  - JOUR
AU  - Csörgö, Piroska
TI  - Extending the structural homomorphism of LCC loops
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 385
EP  - 389
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a0/
LA  - en
ID  - CMUC_2005__46_3_a0
ER  - 
%0 Journal Article
%A Csörgö, Piroska
%T Extending the structural homomorphism of LCC loops
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 385-389
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a0/
%G en
%F CMUC_2005__46_3_a0
Csörgö, Piroska. Extending the structural homomorphism of LCC loops. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 385-389. http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a0/