Extending the structural homomorphism of LCC loops
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 385-389
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A loop $Q$ is said to be left conjugacy closed if the set $A=\{L_x/x\in Q\}$ is closed under conjugation. Let $Q$ be an LCC loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$ respectively, and let $I(Q)$ be its inner mapping group, $M(Q)$ its multiplication group. By Drápal's theorem [3, Theorem 2.8] there exists a homomorphism $\Lambda : \Cal L \to I(Q)$ determined by $L_x\to R^{-1}_x L_x$. In this short note we examine different possible extensions of this $\Lambda$ and the uniqueness of these extensions.
Classification :
20D10, 20N05
Keywords: LCC loop; multiplication group; inner mapping group; homomorphism
Keywords: LCC loop; multiplication group; inner mapping group; homomorphism
@article{CMUC_2005__46_3_a0,
author = {Cs\"org\"o, Piroska},
title = {Extending the structural homomorphism of {LCC} loops},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {385--389},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {2005},
mrnumber = {2174517},
zbl = {1106.20051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a0/}
}
Csörgö, Piroska. Extending the structural homomorphism of LCC loops. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 3, pp. 385-389. http://geodesic.mathdoc.fr/item/CMUC_2005__46_3_a0/