On the range of a closed operator in an $L_1$-space of vector-valued functions
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 349-367.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a reflexive Banach space and $A$ be a closed operator in an $L_1$-space of $X$-valued functions. Then we characterize the range $R(A)$ of $A$ as follows. Let $0\neq \lambda_{n}\in \rho(A)$ for all $1\leq n \infty$, where $\rho(A)$ denotes the resolvent set of $A$, and assume that $\lim_{n\rightarrow \infty} \lambda_{n}=0$ and $\sup_{n\geq 1} \|\lambda_{n}(\lambda_{n}-A)^{-1}\| \infty$. Furthermore, assume that there exists $\lambda_{\infty}\in \rho(A)$ such that $\|\lambda_{\infty}(\lambda_{\infty}-A)^{-1}\|\leq 1$. Then $f\in R(A)$ is equivalent to $\sup_{n\geq 1} \|(\lambda_{n}-A)^{-1}f\|_{1}\infty$. This generalizes Shaw's result for scalar-valued functions.
Classification : 47A05, 47A35, 47B38, 47D06, 47D09
Keywords: reflexive Banach space; $L_1$-space of vector-valued functions; closed operator; resolvent set; range and domain; linear contraction; $C_0$-semigroup; strongly continuous cosine family of operators
@article{CMUC_2005__46_2_a9,
     author = {Sato, Ryotaro},
     title = {On the range of a closed operator  in an $L_1$-space of vector-valued functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {349--367},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2005},
     mrnumber = {2176897},
     zbl = {1123.47012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a9/}
}
TY  - JOUR
AU  - Sato, Ryotaro
TI  - On the range of a closed operator  in an $L_1$-space of vector-valued functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 349
EP  - 367
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a9/
LA  - en
ID  - CMUC_2005__46_2_a9
ER  - 
%0 Journal Article
%A Sato, Ryotaro
%T On the range of a closed operator  in an $L_1$-space of vector-valued functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 349-367
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a9/
%G en
%F CMUC_2005__46_2_a9
Sato, Ryotaro. On the range of a closed operator  in an $L_1$-space of vector-valued functions. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 349-367. http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a9/