Finitely generated almost universal varieties of $0$-lattices
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 301-325.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A concrete category $\Bbb K$ is (algebraically) {\it universal\/} if any category of algebras has a full embedding into $\Bbb K$, and $\Bbb K$ is {\it almost universal\/} if there is a class $\Cal C$ of $\Bbb K$-objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of $0$-lattices which are almost universal.
Classification : 06B20, 06D15, 08A35, 08B15, 08C15, 18B15
Keywords: (algebraically) universal category; finite-to-finite universal category; almost universal category; $0$-lattice; variety of $0$-lattices
@article{CMUC_2005__46_2_a6,
     author = {Koubek, V. and Sichler, J.},
     title = {Finitely generated almost universal varieties of $0$-lattices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {301--325},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2005},
     mrnumber = {2176894},
     zbl = {1119.06006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/}
}
TY  - JOUR
AU  - Koubek, V.
AU  - Sichler, J.
TI  - Finitely generated almost universal varieties of $0$-lattices
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 301
EP  - 325
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/
LA  - en
ID  - CMUC_2005__46_2_a6
ER  - 
%0 Journal Article
%A Koubek, V.
%A Sichler, J.
%T Finitely generated almost universal varieties of $0$-lattices
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 301-325
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/
%G en
%F CMUC_2005__46_2_a6
Koubek, V.; Sichler, J. Finitely generated almost universal varieties of $0$-lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 301-325. http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/