Finitely generated almost universal varieties of $0$-lattices
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 301-325
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A concrete category $\Bbb K$ is (algebraically) {\it universal\/} if any category of algebras has a full embedding into $\Bbb K$, and $\Bbb K$ is {\it almost universal\/} if there is a class $\Cal C$ of $\Bbb K$-objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of $0$-lattices which are almost universal.
Classification :
06B20, 06D15, 08A35, 08B15, 08C15, 18B15
Keywords: (algebraically) universal category; finite-to-finite universal category; almost universal category; $0$-lattice; variety of $0$-lattices
Keywords: (algebraically) universal category; finite-to-finite universal category; almost universal category; $0$-lattice; variety of $0$-lattices
@article{CMUC_2005__46_2_a6,
author = {Koubek, V. and Sichler, J.},
title = {Finitely generated almost universal varieties of $0$-lattices},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {301--325},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2005},
mrnumber = {2176894},
zbl = {1119.06006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/}
}
TY - JOUR AU - Koubek, V. AU - Sichler, J. TI - Finitely generated almost universal varieties of $0$-lattices JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 301 EP - 325 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/ LA - en ID - CMUC_2005__46_2_a6 ER -
Koubek, V.; Sichler, J. Finitely generated almost universal varieties of $0$-lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 301-325. http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a6/