Internal object actions
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 235-255.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We describe the place, among other known categorical constructions, of the internal object actions involved in the categorical notion of semidirect product, and introduce a new notion of representable action providing a common categorical description for the automorphism group of a group, for the algebra of derivations of a Lie algebra, and for the actor of a crossed module.
Classification : 18C15, 18C20, 18D10, 18D15, 18G50
Keywords: monoidal category; monoidal functor; monoid; action; action of an object; semi-abelian category; semidirect product; groups; Lie algebras; crossed modules; actors
@article{CMUC_2005__46_2_a2,
     author = {Borceux, F. and Janelidze, G. and Kelly, G. M.},
     title = {Internal object actions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {235--255},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2005},
     mrnumber = {2176890},
     zbl = {1121.18004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a2/}
}
TY  - JOUR
AU  - Borceux, F.
AU  - Janelidze, G.
AU  - Kelly, G. M.
TI  - Internal object actions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 235
EP  - 255
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a2/
LA  - en
ID  - CMUC_2005__46_2_a2
ER  - 
%0 Journal Article
%A Borceux, F.
%A Janelidze, G.
%A Kelly, G. M.
%T Internal object actions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 235-255
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a2/
%G en
%F CMUC_2005__46_2_a2
Borceux, F.; Janelidze, G.; Kelly, G. M. Internal object actions. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 235-255. http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a2/