Combinatorial trees in Priestley spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 217-234.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\geq 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.
Classification : 03C05, 06A11, 06D20, 06D50, 06D55, 54F05
Keywords: distributive lattice; Priestley duality; poset; first-order definable
@article{CMUC_2005__46_2_a1,
     author = {Ball, Richard N. and Pultr, Ale\v{s} and Sichler, Ji\v{r}{\'\i}},
     title = {Combinatorial trees in {Priestley} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {217--234},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2005},
     mrnumber = {2176889},
     zbl = {1121.06003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a1/}
}
TY  - JOUR
AU  - Ball, Richard N.
AU  - Pultr, Aleš
AU  - Sichler, Jiří
TI  - Combinatorial trees in Priestley spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 217
EP  - 234
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a1/
LA  - en
ID  - CMUC_2005__46_2_a1
ER  - 
%0 Journal Article
%A Ball, Richard N.
%A Pultr, Aleš
%A Sichler, Jiří
%T Combinatorial trees in Priestley spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 217-234
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a1/
%G en
%F CMUC_2005__46_2_a1
Ball, Richard N.; Pultr, Aleš; Sichler, Jiří. Combinatorial trees in Priestley spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 2, pp. 217-234. http://geodesic.mathdoc.fr/item/CMUC_2005__46_2_a1/