Properties of one-point completions of a noncompact metrizable space
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 105-123.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If a metrizable space $X$ is dense in a metrizable space $Y$, then $Y$ is called a {\it metric extension\/} of $X$. If $T_{1}$ and $T_{2}$ are metric extensions of $X$ and there is a continuous map of $T_{2}$ into $T_{1}$ keeping $X$ pointwise fixed, we write $T_{1}\leq T_{2}$. If $X$ is noncompact and metrizable, then $(\Cal M (X),\leq)$ denotes the set of metric extensions of $X$, where $T_{1}$ and $T_{2}$ are identified if $T_{1}\leq T_{2}$ and $T_{2}\leq T_{1}$, i.e., if there is a homeomorphism of $T_{1}$ onto $T_{2}$ keeping $X$ pointwise fixed. $(\Cal M(X),\leq)$ is a large complicated poset studied extensively by V. Bel'nov [{\it The structure of the set of metric extensions of a noncompact metrizable space\/}, Trans. Moscow Math. Soc. {\bf 32} (1975), 1--30]. We study the poset $(\Cal E (X),\leq)$ of one-point metric extensions of a locally compact metrizable space $X$. Each such extension is a (Cauchy) completion of $X$ with respect to a compatible metric. This poset resembles the lattice of compactifications of a locally compact space if $X$ is also separable. For Tychonoff $X$, let $X^{\ast}=\beta X\backslash X$, and let $\Cal Z(X)$ be the poset of zerosets of $X$ partially ordered by set inclusion. \newline {\bf Theorem} {\sl If $\,X$ and $Y$ are locally compact separable metrizable spaces, then $(\Cal E(X),\leq)$ and $(\Cal E (Y),\leq)$ are order-isomorphic iff $\,\Cal Z (X^{\ast})$ and $\Cal Z(Y^{\ast})$ are order-isomorphic, and iff $\,X^{\ast}$ and $Y^{\ast}$ are homeomorphic\/}. We construct an order preserving bijection $\lambda : \Cal E (X)\rightarrow \Cal Z (X^{\ast})$ such that a one-point completion in $\Cal E (X)$ is locally compact iff its image under $\lambda$ is clopen. We extend some results to the nonseparable case, but leave problems open. In a concluding section, we show how to construct one-point completions geometrically in some explicit cases.
Classification : 54D35, 54E35, 54E45, 54E50
Keywords: metrizable; metric extensions and completions; completely metrizable; one-point metric extensions; extension traces; zerosets; clopen sets; Stone-Čech compactification; $\beta X\backslash X$; hedgehog
@article{CMUC_2005__46_1_a9,
     author = {Henriksen, M. and Janos, L. and Woods, R. G.},
     title = {Properties of one-point completions of a noncompact metrizable space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {105--123},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2005},
     mrnumber = {2175863},
     zbl = {1121.54048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a9/}
}
TY  - JOUR
AU  - Henriksen, M.
AU  - Janos, L.
AU  - Woods, R. G.
TI  - Properties of one-point completions of a noncompact metrizable space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 105
EP  - 123
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a9/
LA  - en
ID  - CMUC_2005__46_1_a9
ER  - 
%0 Journal Article
%A Henriksen, M.
%A Janos, L.
%A Woods, R. G.
%T Properties of one-point completions of a noncompact metrizable space
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 105-123
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a9/
%G en
%F CMUC_2005__46_1_a9
Henriksen, M.; Janos, L.; Woods, R. G. Properties of one-point completions of a noncompact metrizable space. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 105-123. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a9/