Cardinal inequalities implying maximal resolvability
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 85-91
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We compare several conditions sufficient for maximal resolvability of topo\-lo\-gi\-cal spaces. We prove that a space $X$ is maximally resolvable provided that for a dense set $X_0\subset X$ and for each $x\in X_0$ the $\pi$-character of $X$ at $x$ is not greater than the dispersion character of $X$. On the other hand, we show that this implication is not reversible even in the class of card-homogeneous spaces.
Classification :
54A10, 54A25
Keywords: maximally resolvable space; base at a point; $\pi$-base; $\pi$-character
Keywords: maximally resolvable space; base at a point; $\pi$-base; $\pi$-character
@article{CMUC_2005__46_1_a7,
author = {Balcerzak, Marek and Natkaniec, Tomasz and Terepeta, Ma{\l}gorzata},
title = {Cardinal inequalities implying maximal resolvability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {85--91},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2005},
mrnumber = {2175861},
zbl = {1121.54008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a7/}
}
TY - JOUR AU - Balcerzak, Marek AU - Natkaniec, Tomasz AU - Terepeta, Małgorzata TI - Cardinal inequalities implying maximal resolvability JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 85 EP - 91 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a7/ LA - en ID - CMUC_2005__46_1_a7 ER -
%0 Journal Article %A Balcerzak, Marek %A Natkaniec, Tomasz %A Terepeta, Małgorzata %T Cardinal inequalities implying maximal resolvability %J Commentationes Mathematicae Universitatis Carolinae %D 2005 %P 85-91 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a7/ %G en %F CMUC_2005__46_1_a7
Balcerzak, Marek; Natkaniec, Tomasz; Terepeta, Małgorzata. Cardinal inequalities implying maximal resolvability. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 85-91. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a7/