A d.c. $C^1$ function need not be difference of convex $C^1$ functions
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 75-83.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In [2] a delta convex function on $\Bbb R^2$ is constructed which is strictly differentiable at $0$ but it is not representable as a difference of two convex function of this property. We improve this result by constructing a delta convex function of class $C^1(\Bbb R^2)$ which cannot be represented as a difference of two convex functions differentiable at 0. Further we give an example of a delta convex function differentiable everywhere which is not strictly differentiable at 0.
Classification : 26B05, 26B25
Keywords: differentiability; delta-convex functions
@article{CMUC_2005__46_1_a6,
     author = {Pavlica, David},
     title = {A d.c. $C^1$ function need not be difference  of convex $C^1$ functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2005},
     mrnumber = {2175860},
     zbl = {1121.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a6/}
}
TY  - JOUR
AU  - Pavlica, David
TI  - A d.c. $C^1$ function need not be difference  of convex $C^1$ functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 75
EP  - 83
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a6/
LA  - en
ID  - CMUC_2005__46_1_a6
ER  - 
%0 Journal Article
%A Pavlica, David
%T A d.c. $C^1$ function need not be difference  of convex $C^1$ functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 75-83
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a6/
%G en
%F CMUC_2005__46_1_a6
Pavlica, David. A d.c. $C^1$ function need not be difference  of convex $C^1$ functions. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a6/