Duality theory of spaces of vector-valued continuous functions
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 55-73.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a completely regular Hausdorff space, $E$ a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous $E$-valued functions on $X$. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta_z(X,E)$ for $z=\sigma, \tau, t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E')$ for $z=\sigma, \tau, t$. It is shown that if a subset $H$ of $M_z(X,E')$ is relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact, then the set $\operatorname{conv} (S(H))$ is still relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact ($S(H)=$ the solid hull of $H$ in $M_z(X,E')$). A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X,E)$ is obtained.
Classification : 46E10, 46E15, 46E40, 46G10
Keywords: vector-valued continuous functions; strict topologies; locally solid topologies; weak-star compactness; vector measures
@article{CMUC_2005__46_1_a5,
     author = {Nowak, Marian and Rzepka, Aleksandra},
     title = {Duality theory of spaces of vector-valued continuous functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2005},
     mrnumber = {2175859},
     zbl = {1123.46021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/}
}
TY  - JOUR
AU  - Nowak, Marian
AU  - Rzepka, Aleksandra
TI  - Duality theory of spaces of vector-valued continuous functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 55
EP  - 73
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/
LA  - en
ID  - CMUC_2005__46_1_a5
ER  - 
%0 Journal Article
%A Nowak, Marian
%A Rzepka, Aleksandra
%T Duality theory of spaces of vector-valued continuous functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 55-73
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/
%G en
%F CMUC_2005__46_1_a5
Nowak, Marian; Rzepka, Aleksandra. Duality theory of spaces of vector-valued continuous functions. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/