Duality theory of spaces of vector-valued continuous functions
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 55-73
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $X$ be a completely regular Hausdorff space, $E$ a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous $E$-valued functions on $X$. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta_z(X,E)$ for $z=\sigma, \tau, t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E')$ for $z=\sigma, \tau, t$. It is shown that if a subset $H$ of $M_z(X,E')$ is relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact, then the set $\operatorname{conv} (S(H))$ is still relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact ($S(H)=$ the solid hull of $H$ in $M_z(X,E')$). A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X,E)$ is obtained.
Classification :
46E10, 46E15, 46E40, 46G10
Keywords: vector-valued continuous functions; strict topologies; locally solid topologies; weak-star compactness; vector measures
Keywords: vector-valued continuous functions; strict topologies; locally solid topologies; weak-star compactness; vector measures
@article{CMUC_2005__46_1_a5,
author = {Nowak, Marian and Rzepka, Aleksandra},
title = {Duality theory of spaces of vector-valued continuous functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {55--73},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2005},
mrnumber = {2175859},
zbl = {1123.46021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/}
}
TY - JOUR AU - Nowak, Marian AU - Rzepka, Aleksandra TI - Duality theory of spaces of vector-valued continuous functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 55 EP - 73 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/ LA - en ID - CMUC_2005__46_1_a5 ER -
%0 Journal Article %A Nowak, Marian %A Rzepka, Aleksandra %T Duality theory of spaces of vector-valued continuous functions %J Commentationes Mathematicae Universitatis Carolinae %D 2005 %P 55-73 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/ %G en %F CMUC_2005__46_1_a5
Nowak, Marian; Rzepka, Aleksandra. Duality theory of spaces of vector-valued continuous functions. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a5/