Biharmonic morphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 145-159
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(X, \Cal H)$ and $(X',\Cal H')$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\Cal H)$ to $(X',\Cal H')$ is a continuous map from $X$ to $X'$ which preserves the biharmonic structures of $X$ and $X'$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X'$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\Cal H)$ and $(X',\Cal H')$ and the coupling kernels of them.
Classification :
31B30, 31C35, 31D05
Keywords: harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism
Keywords: harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism
@article{CMUC_2005__46_1_a13,
author = {Chadli, Mustapha and El Kadiri, Mohamed and Haddad, Sabah},
title = {Biharmonic morphisms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {145--159},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2005},
mrnumber = {2175867},
zbl = {1121.31004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/}
}
TY - JOUR AU - Chadli, Mustapha AU - El Kadiri, Mohamed AU - Haddad, Sabah TI - Biharmonic morphisms JO - Commentationes Mathematicae Universitatis Carolinae PY - 2005 SP - 145 EP - 159 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/ LA - en ID - CMUC_2005__46_1_a13 ER -
Chadli, Mustapha; El Kadiri, Mohamed; Haddad, Sabah. Biharmonic morphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 145-159. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/