Biharmonic morphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 145-159.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(X, \Cal H)$ and $(X',\Cal H')$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\Cal H)$ to $(X',\Cal H')$ is a continuous map from $X$ to $X'$ which preserves the biharmonic structures of $X$ and $X'$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X'$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\Cal H)$ and $(X',\Cal H')$ and the coupling kernels of them.
Classification : 31B30, 31C35, 31D05
Keywords: harmonic space; harmonic morphism; biharmonic space; biharmonic function; biharmonic morphism
@article{CMUC_2005__46_1_a13,
     author = {Chadli, Mustapha and El Kadiri, Mohamed and Haddad, Sabah},
     title = {Biharmonic morphisms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {145--159},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2005},
     mrnumber = {2175867},
     zbl = {1121.31004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/}
}
TY  - JOUR
AU  - Chadli, Mustapha
AU  - El Kadiri, Mohamed
AU  - Haddad, Sabah
TI  - Biharmonic morphisms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2005
SP  - 145
EP  - 159
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/
LA  - en
ID  - CMUC_2005__46_1_a13
ER  - 
%0 Journal Article
%A Chadli, Mustapha
%A El Kadiri, Mohamed
%A Haddad, Sabah
%T Biharmonic morphisms
%J Commentationes Mathematicae Universitatis Carolinae
%D 2005
%P 145-159
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/
%G en
%F CMUC_2005__46_1_a13
Chadli, Mustapha; El Kadiri, Mohamed; Haddad, Sabah. Biharmonic morphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 46 (2005) no. 1, pp. 145-159. http://geodesic.mathdoc.fr/item/CMUC_2005__46_1_a13/