Nonreciprocal algebraic numbers of small measure
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 4, pp. 693-697.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main result of this paper implies that for every positive integer $d\geqslant 2$ there are at least $(d-3)^2/2$ nonconjugate algebraic numbers which have their Mahler measures lying in the interval $(1,2)$. These algebraic numbers are constructed as roots of certain nonreciprocal quadrinomials.
Classification : 11R06, 11R09
Keywords: Mahler measure; quadrinomials; irreducibility; nonreciprocal numbers
@article{CMUC_2004__45_4_a9,
     author = {Dubickas, Art\={u}ras},
     title = {Nonreciprocal algebraic numbers of small measure},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {693--697},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2004},
     mrnumber = {2103084},
     zbl = {1127.11070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_4_a9/}
}
TY  - JOUR
AU  - Dubickas, Artūras
TI  - Nonreciprocal algebraic numbers of small measure
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 693
EP  - 697
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_4_a9/
LA  - en
ID  - CMUC_2004__45_4_a9
ER  - 
%0 Journal Article
%A Dubickas, Artūras
%T Nonreciprocal algebraic numbers of small measure
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 693-697
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_4_a9/
%G en
%F CMUC_2004__45_4_a9
Dubickas, Artūras. Nonreciprocal algebraic numbers of small measure. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 4, pp. 693-697. http://geodesic.mathdoc.fr/item/CMUC_2004__45_4_a9/