A bifurcation theorem for noncoercive integral functionals
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 443-456
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the existence of critical points for noncoercive functionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero for the associated differential operator is established.
Classification :
35B32, 35B38, 35J20, 47J15, 47J30, 49J10
Keywords: critical points; noncoercive and nondifferentiable functionals; bifurcation \break points
Keywords: critical points; noncoercive and nondifferentiable functionals; bifurcation \break points
@article{CMUC_2004__45_3_a5,
author = {Faraci, Francesca},
title = {A bifurcation theorem for noncoercive integral functionals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {443--456},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2004},
mrnumber = {2103139},
zbl = {1098.35019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a5/}
}
TY - JOUR AU - Faraci, Francesca TI - A bifurcation theorem for noncoercive integral functionals JO - Commentationes Mathematicae Universitatis Carolinae PY - 2004 SP - 443 EP - 456 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a5/ LA - en ID - CMUC_2004__45_3_a5 ER -
Faraci, Francesca. A bifurcation theorem for noncoercive integral functionals. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 443-456. http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a5/