Minimal $KC$-spaces are countably compact
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 543-547.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we show that a minimal space in which compact subsets are closed is countably compact. This answers a question posed in [1].
Classification : 54A10, 54D30
Keywords: $K$C-space; weaker topology
@article{CMUC_2004__45_3_a14,
     author = {Vidalis, T.},
     title = {Minimal $KC$-spaces are countably compact},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {543--547},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2004},
     mrnumber = {2103148},
     zbl = {1097.54027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a14/}
}
TY  - JOUR
AU  - Vidalis, T.
TI  - Minimal $KC$-spaces are countably compact
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 543
EP  - 547
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a14/
LA  - en
ID  - CMUC_2004__45_3_a14
ER  - 
%0 Journal Article
%A Vidalis, T.
%T Minimal $KC$-spaces are countably compact
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 543-547
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a14/
%G en
%F CMUC_2004__45_3_a14
Vidalis, T. Minimal $KC$-spaces are countably compact. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 543-547. http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a14/