Rings of continuous functions vanishing at infinity
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 519-533
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that a Hausdorff space $X$ is locally compact if and only if its topology coincides with the weak topology induced by $C_\infty (X)$. It is shown that for a Hausdorff space $X$, there exists a locally compact Hausdorff space $Y$ such that $C_\infty(X)\cong C_\infty(Y)$. It is also shown that for locally compact spaces $X$ and $Y$, $C_\infty(X)\cong C_\infty(Y)$ if and only if $X\cong Y$. Prime ideals in $C_\infty(X)$ are uniquely represented by a class of prime ideals in $C^*(X)$. $\infty$-compact spaces are introduced and it turns out that a locally compact space $X$ is $\infty$-compact if and only if every prime ideal in $C_\infty(X)$ is fixed. The existence of the smallest $\infty$-compact space in $\beta X$ containing a given space $X$ is proved. Finally some relations between topological properties of the space $X$ and algebraic properties of the ring $C_\infty(X)$ are investigated. For example we have shown that $C_\infty(X)$ is a regular ring if and only if $X$ is an $\infty$-compact $\operatorname{P}_\infty$-space.
Classification :
54C40, 54D45
Keywords: $\sigma $-compact; pseudocompact; $\infty $-compact; $\infty $-compactification; $\operatorname{P}_{\infty }$-space; P-point; regular ring; fixed and free ideals
Keywords: $\sigma $-compact; pseudocompact; $\infty $-compact; $\infty $-compactification; $\operatorname{P}_{\infty }$-space; P-point; regular ring; fixed and free ideals
@article{CMUC_2004__45_3_a12,
author = {Aliabad, A. R. and Azarpanah, F. and Namdari, M.},
title = {Rings of continuous functions vanishing at infinity},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {519--533},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {2004},
mrnumber = {2103146},
zbl = {1097.54021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/}
}
TY - JOUR AU - Aliabad, A. R. AU - Azarpanah, F. AU - Namdari, M. TI - Rings of continuous functions vanishing at infinity JO - Commentationes Mathematicae Universitatis Carolinae PY - 2004 SP - 519 EP - 533 VL - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/ LA - en ID - CMUC_2004__45_3_a12 ER -
%0 Journal Article %A Aliabad, A. R. %A Azarpanah, F. %A Namdari, M. %T Rings of continuous functions vanishing at infinity %J Commentationes Mathematicae Universitatis Carolinae %D 2004 %P 519-533 %V 45 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/ %G en %F CMUC_2004__45_3_a12
Aliabad, A. R.; Azarpanah, F.; Namdari, M. Rings of continuous functions vanishing at infinity. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 519-533. http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/