Rings of continuous functions vanishing at infinity
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 519-533.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a Hausdorff space $X$ is locally compact if and only if its topology coincides with the weak topology induced by $C_\infty (X)$. It is shown that for a Hausdorff space $X$, there exists a locally compact Hausdorff space $Y$ such that $C_\infty(X)\cong C_\infty(Y)$. It is also shown that for locally compact spaces $X$ and $Y$, $C_\infty(X)\cong C_\infty(Y)$ if and only if $X\cong Y$. Prime ideals in $C_\infty(X)$ are uniquely represented by a class of prime ideals in $C^*(X)$. $\infty$-compact spaces are introduced and it turns out that a locally compact space $X$ is $\infty$-compact if and only if every prime ideal in $C_\infty(X)$ is fixed. The existence of the smallest $\infty$-compact space in $\beta X$ containing a given space $X$ is proved. Finally some relations between topological properties of the space $X$ and algebraic properties of the ring $C_\infty(X)$ are investigated. For example we have shown that $C_\infty(X)$ is a regular ring if and only if $X$ is an $\infty$-compact $\operatorname{P}_\infty$-space.
Classification : 54C40, 54D45
Keywords: $\sigma $-compact; pseudocompact; $\infty $-compact; $\infty $-compactification; $\operatorname{P}_{\infty }$-space; P-point; regular ring; fixed and free ideals
@article{CMUC_2004__45_3_a12,
     author = {Aliabad, A. R. and Azarpanah, F. and Namdari, M.},
     title = {Rings of continuous functions vanishing at infinity},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {519--533},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2004},
     mrnumber = {2103146},
     zbl = {1097.54021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/}
}
TY  - JOUR
AU  - Aliabad, A. R.
AU  - Azarpanah, F.
AU  - Namdari, M.
TI  - Rings of continuous functions vanishing at infinity
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 519
EP  - 533
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/
LA  - en
ID  - CMUC_2004__45_3_a12
ER  - 
%0 Journal Article
%A Aliabad, A. R.
%A Azarpanah, F.
%A Namdari, M.
%T Rings of continuous functions vanishing at infinity
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 519-533
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/
%G en
%F CMUC_2004__45_3_a12
Aliabad, A. R.; Azarpanah, F.; Namdari, M. Rings of continuous functions vanishing at infinity. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 519-533. http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a12/