Essential $P$-spaces: a generalization of door spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 509-518.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An element $f$ of a commutative ring $A$ with identity element is called a {\it von Neumann regular element\/} if there is a $g$ in $A$ such that $f^{2}g=f$. A point $p$ of a (Tychonoff) space $X$ is called a $P$-{\it point\/} if each $f$ in the ring $C(X)$ of continuous real-valued functions is constant on a neighborhood of $p$. It is well-known that the ring $C(X)$ is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case $X$ is called a $P$-{\it space\/}. If all but at most one point of $X$ is a $P$-point, then $X$ is called an {\it essential $P$-space\/}. In earlier work it was shown that $X$ is an essential $P$-space iff for each $f$ in $C(X)$, either $f$ or $1-f$ is von Neumann regular element. Properties of essential $P$-spaces (which are generalizations of J.L. Kelley's door spaces) are derived with the help of the algebraic properties of $C(X)$. Despite its simple sounding description, an essential $P$-space is not simple to describe definitively unless its non $P$-point $\eta$ is a $G_{\delta}$, and not even then if there are infinitely many pairwise disjoint cozerosets with $\eta$ in their closure. The general case is considered and open problems are posed.
Classification : 13F30, 16A30, 16E50, 54G10, 54H13
Keywords: $P$-point; $P$-space; essential $P$-space; door space; $F$-space; basically disconnected space; space of minimal prime ideals; $SV$-ring; $SV$-space; rank; von Neumann regular ring; von Neumann local ring; Lindelöf space
@article{CMUC_2004__45_3_a11,
     author = {Osba, Emad Abu and Henriksen, Melvin},
     title = {Essential $P$-spaces: a generalization of door spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {509--518},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2004},
     mrnumber = {2103145},
     zbl = {1100.54024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a11/}
}
TY  - JOUR
AU  - Osba, Emad Abu
AU  - Henriksen, Melvin
TI  - Essential $P$-spaces: a generalization of door spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 509
EP  - 518
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a11/
LA  - en
ID  - CMUC_2004__45_3_a11
ER  - 
%0 Journal Article
%A Osba, Emad Abu
%A Henriksen, Melvin
%T Essential $P$-spaces: a generalization of door spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 509-518
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a11/
%G en
%F CMUC_2004__45_3_a11
Osba, Emad Abu; Henriksen, Melvin. Essential $P$-spaces: a generalization of door spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 509-518. http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a11/