Monotonicity of the maximum of inner product norms
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 383-388.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Bbb K$ be the field of real or complex numbers. In this note we characterize all inner product norms $p_1,\ldots ,p_m$ on $\Bbb K^n$ for which the norm $x\longmapsto \max \{p_1(x),\ldots ,p_m(x)\}$ on $\Bbb K^n$ is monotonic.
Classification : 15A60, 15A63, 52A21
Keywords: finite dimensional vector space; monotonic norm; absolute norm; inner pro\-duct norm
@article{CMUC_2004__45_3_a0,
     author = {Lavri\v{c}, Boris},
     title = {Monotonicity of the maximum of inner product norms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--388},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2004},
     mrnumber = {2103134},
     zbl = {1100.15013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a0/}
}
TY  - JOUR
AU  - Lavrič, Boris
TI  - Monotonicity of the maximum of inner product norms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 383
EP  - 388
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a0/
LA  - en
ID  - CMUC_2004__45_3_a0
ER  - 
%0 Journal Article
%A Lavrič, Boris
%T Monotonicity of the maximum of inner product norms
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 383-388
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a0/
%G en
%F CMUC_2004__45_3_a0
Lavrič, Boris. Monotonicity of the maximum of inner product norms. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 3, pp. 383-388. http://geodesic.mathdoc.fr/item/CMUC_2004__45_3_a0/