A class of Bol loops with a subgroup of index two
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 371-381
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojt\v{e}chovsk'y: On the uniqueness of loops $M(G,2)$.
Classification :
20A05, 20N05
Keywords: Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
Keywords: Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
@article{CMUC_2004__45_2_a16,
author = {Vojt\v{e}chovsk\'y, Petr},
title = {A class of {Bol} loops with a subgroup of index two},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {371--381},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2004},
mrnumber = {2075284},
zbl = {1101.20048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a16/}
}
Vojtěchovský, Petr. A class of Bol loops with a subgroup of index two. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 371-381. http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a16/