A class of Bol loops with a subgroup of index two
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 371-381.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojt\v{e}chovsk'y: On the uniqueness of loops $M(G,2)$.
Classification : 20A05, 20N05
Keywords: Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
@article{CMUC_2004__45_2_a16,
     author = {Vojt\v{e}chovsk\'y, Petr},
     title = {A class of {Bol} loops with a subgroup of index two},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {371--381},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2004},
     mrnumber = {2075284},
     zbl = {1101.20048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a16/}
}
TY  - JOUR
AU  - Vojtěchovský, Petr
TI  - A class of Bol loops with a subgroup of index two
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 371
EP  - 381
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a16/
LA  - en
ID  - CMUC_2004__45_2_a16
ER  - 
%0 Journal Article
%A Vojtěchovský, Petr
%T A class of Bol loops with a subgroup of index two
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 371-381
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a16/
%G en
%F CMUC_2004__45_2_a16
Vojtěchovský, Petr. A class of Bol loops with a subgroup of index two. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 371-381. http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a16/