Embedding $3$-homogeneous latin trades into abelian $2$-groups
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 191-212.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T'$ with $T'\cap T=\emptyset $ such that $(L\setminus T)\cup T'$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.
Classification : 05B15, 20N05
Keywords: latin square; latin trade; abelian $2$-group
@article{CMUC_2004__45_2_a1,
     author = {Cavenagh, Nicholas J.},
     title = {Embedding $3$-homogeneous latin trades into abelian $2$-groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {191--212},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2004},
     mrnumber = {2075269},
     zbl = {1099.05503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a1/}
}
TY  - JOUR
AU  - Cavenagh, Nicholas J.
TI  - Embedding $3$-homogeneous latin trades into abelian $2$-groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 191
EP  - 212
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a1/
LA  - en
ID  - CMUC_2004__45_2_a1
ER  - 
%0 Journal Article
%A Cavenagh, Nicholas J.
%T Embedding $3$-homogeneous latin trades into abelian $2$-groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 191-212
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a1/
%G en
%F CMUC_2004__45_2_a1
Cavenagh, Nicholas J. Embedding $3$-homogeneous latin trades into abelian $2$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 2, pp. 191-212. http://geodesic.mathdoc.fr/item/CMUC_2004__45_2_a1/