Cardinal characteristics of the ideal of Haar null sets
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 119-137.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We calculate the cardinal characteristics of the $\sigma$-ideal $\Cal H\Cal N(G)$ of Haar null subsets of a Polish non-locally compact group $G$ with invariant metric and show that $\operatorname{cov}(\Cal H\Cal N(G)) \leq \frak b\leq \max \{\frak d,\operatorname{non}(\Cal N)\}\leq \operatorname{non}(\Cal H\Cal N(G))\leq \operatorname{cof}(\Cal H\Cal N(G)) \kern -0.86pt > \kern -0.86pt \min \{\frak d,\operatorname{non}(\Cal N)\}$. If $G=\prod_{n\geq 0}G_n$ is the product of abelian locally compact groups $G_n$, then $\operatorname{add}(\Cal H\Cal N(G)) \break = \operatorname{add}(\Cal N)$, $\operatorname{cov}(\Cal H\Cal N(G))=\min\{\frak b, \operatorname{cov}(\Cal N)\}$, $\operatorname{non}(\Cal H\Cal N(G))= \max \{\frak d,\operatorname{non}(\Cal N)\}$ and \linebreak $\operatorname{cof}(\Cal H\Cal N(G))\geq \operatorname{cof}(\Cal N)$, where $\Cal N$ is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that $\operatorname{cof}(\Cal H\Cal N(G))>2^{\aleph_0}$ and hence $G$ contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of $G$. This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group $G$ with invariant metric the ideal $\Cal H\Cal N(G)$ contains all $o$-bounded subsets (equivalently, subsets with the small ball property) of $G$.
Classification : 03E04, 03E15, 03E17, 03E35, 03E50, 03E75, 22A10, 28C10, 54A25, 54H11
Keywords: Polish group; Haar null set; Martin Axion; cardinal characteristics of an ideal; $o$-bounded set; the small ball property
@article{CMUC_2004__45_1_a8,
     author = {Banakh, T.},
     title = {Cardinal characteristics of the ideal of {Haar} null sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {119--137},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2004},
     mrnumber = {2076864},
     zbl = {1098.03057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a8/}
}
TY  - JOUR
AU  - Banakh, T.
TI  - Cardinal characteristics of the ideal of Haar null sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 119
EP  - 137
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a8/
LA  - en
ID  - CMUC_2004__45_1_a8
ER  - 
%0 Journal Article
%A Banakh, T.
%T Cardinal characteristics of the ideal of Haar null sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 119-137
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a8/
%G en
%F CMUC_2004__45_1_a8
Banakh, T. Cardinal characteristics of the ideal of Haar null sets. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 119-137. http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a8/