On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 91-100.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a Schrödinger-type differential expression $H_V=\nabla^*\nabla+V$, where $\nabla $ is a $C^{\infty}$-bounded Hermitian connection on a Hermitian vector bundle $E$ of bounded geometry over a manifold of bounded geometry $(M,g)$ with metric $g$ and positive $C^{\infty}$-bounded measure $d\mu$, and $V$ is a locally integrable section of the bundle of endomorphisms of $E$. We give a sufficient condition for $m$-sectoriality of a realization of $H_V$ in $L^2(E)$. In the proof we use generalized Kato's inequality as well as a result on the positivity of $u\in L^2(M)$ satisfying the equation $(\Delta _M+b)u=\nu $, where $\Delta _M$ is the scalar Laplacian on $M$, $b>0$ is a constant and $\nu\geq 0$ is a positive distribution on $M$.
Classification : 35J10, 35P05, 47B25, 58J05, 58J50, 81Q10
Keywords: Schrödinger operator; $m$-sectorial; manifold; bounded geometry; singular potential
@article{CMUC_2004__45_1_a5,
     author = {Milatovic, Ognjen},
     title = {On $m$-sectorial {Schr\"odinger-type} operators with singular potentials on manifolds of bounded geometry},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2004},
     mrnumber = {2076861},
     zbl = {1127.35348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a5/}
}
TY  - JOUR
AU  - Milatovic, Ognjen
TI  - On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 91
EP  - 100
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a5/
LA  - en
ID  - CMUC_2004__45_1_a5
ER  - 
%0 Journal Article
%A Milatovic, Ognjen
%T On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 91-100
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a5/
%G en
%F CMUC_2004__45_1_a5
Milatovic, Ognjen. On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a5/