Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 73-90.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Omega$ be a bounded open subset of $\Bbb R^n$, let $X=(x,t)$ be a point of $\Bbb R^n\times \Bbb R^N$. In the cylinder $Q=\Omega \times (-T,0)$, $T>0$, we deduce the local differentiability result $$ u \in L^2(-a,0,H^2(B(\sigma ),\Bbb R^N))\cap H^1(-a,0,L^2(B(\sigma ),\Bbb R^N)) $$ for the solutions $u$ of the class $L^q(-T,0,H^{1,q}(\Omega,\Bbb R^N))\cap C^{0,\lambda}(\bar Q,\Bbb R^N)$ ($0\lambda1$, $N$ integer $\ge1$) of the nonlinear parabolic system $$ -\sum_{i=1}^n D_i a^i (X,u,Du)+\dfrac {\partial u}{\partial t} = B^0(X,u,Du) $$ with quadratic growth and nonlinearity $q\ge 2$. This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions $u$ belonging to $W^{1,q}\cap C^{0,\lambda}$.
Classification : 35D10, 35K40, 35K55
Keywords: differentiability of weak solution; parabolic systems; nonlinearity with $q>2$
@article{CMUC_2004__45_1_a4,
     author = {Fattorusso, Luisa},
     title = {Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2004},
     mrnumber = {2076860},
     zbl = {1098.35054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a4/}
}
TY  - JOUR
AU  - Fattorusso, Luisa
TI  - Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2004
SP  - 73
EP  - 90
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a4/
LA  - en
ID  - CMUC_2004__45_1_a4
ER  - 
%0 Journal Article
%A Fattorusso, Luisa
%T Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2004
%P 73-90
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a4/
%G en
%F CMUC_2004__45_1_a4
Fattorusso, Luisa. Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 73-90. http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a4/