In search for Lindelöf $C_p$'s
Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 145-151
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown that if $X$ is a first-countable countably compact subspace of ordinals then $C_p(X)$ is Lindelöf. This result is used to construct an example of a countably compact space $X$ such that the extent of $C_p(X)$ is less than the Lindelöf number of $C_p(X)$. This example answers negatively Reznichenko's question whether Baturov's theorem holds for countably compact spaces.
@article{CMUC_2004__45_1_a10,
author = {Buzyakova, Raushan Z.},
title = {In search for {Lindel\"of} $C_p$'s},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {145--151},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2004},
mrnumber = {2076866},
zbl = {1098.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a10/}
}
Buzyakova, Raushan Z. In search for Lindelöf $C_p$'s. Commentationes Mathematicae Universitatis Carolinae, Tome 45 (2004) no. 1, pp. 145-151. http://geodesic.mathdoc.fr/item/CMUC_2004__45_1_a10/