Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 659-667.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

First we recall a Faber-Krahn type inequality and an estimate for $\lambda_p(\Omega)$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda_p(\Omega)$ converges to the Cheeger constant $h(\Omega)$ as $p\to 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega$ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset\subset\Omega$. As a byproduct we prove that for convex $\Omega$ the Cheeger set $\omega$ is also convex.
Classification : 35J20, 35J70, 49Q20, 49R05, 49R50, 52A38
Keywords: isoperimetric estimates; eigenvalue; Cheeger constant; $p$-Laplace operator; $1$-Laplace operator
@article{CMUC_2003__44_4_a9,
     author = {Kawohl, B. and Fridman, V.},
     title = {Isoperimetric estimates for the first eigenvalue of the $p${-Laplace} operator and the {Cheeger} constant},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {659--667},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062882},
     zbl = {1105.35029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a9/}
}
TY  - JOUR
AU  - Kawohl, B.
AU  - Fridman, V.
TI  - Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 659
EP  - 667
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a9/
LA  - en
ID  - CMUC_2003__44_4_a9
ER  - 
%0 Journal Article
%A Kawohl, B.
%A Fridman, V.
%T Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 659-667
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a9/
%G en
%F CMUC_2003__44_4_a9
Kawohl, B.; Fridman, V. Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 659-667. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a9/