On the uniqueness of loops $M(G,2)$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 629-635.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group and $C_2$ the cyclic group of order 2. Consider the 8 multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i,j,k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above 8 multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i,j\in C_2$. If the resulting quasigroup is a Bol loop, it is Moufang. When $G$ is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops $M(G,2)$.
Classification : 20N05
Keywords: Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
@article{CMUC_2003__44_4_a6,
     author = {Vojt\v{e}chovsk\'y, Petr},
     title = {On the uniqueness of loops $M(G,2)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {629--635},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062879},
     zbl = {1101.20047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a6/}
}
TY  - JOUR
AU  - Vojtěchovský, Petr
TI  - On the uniqueness of loops $M(G,2)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 629
EP  - 635
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a6/
LA  - en
ID  - CMUC_2003__44_4_a6
ER  - 
%0 Journal Article
%A Vojtěchovský, Petr
%T On the uniqueness of loops $M(G,2)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 629-635
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a6/
%G en
%F CMUC_2003__44_4_a6
Vojtěchovský, Petr. On the uniqueness of loops $M(G,2)$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 629-635. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a6/