Bases of minimal elements of some partially ordered free abelian groups
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 623-628.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper, we will show that the set of minimal elements of a full affine semigroup $A\hookrightarrow \Bbb N^k_0$ contains a free basis of the group generated by $A$ in $\Bbb Z^k$. This will be applied to the study of the group $\text{\rm K}_0(R)$ for a semilocal ring $R$.
Classification : 06F20, 16D40, 16D70, 16E20, 20F60, 20M14
Keywords: full affine semigroups; partially ordered abelian groups; semilocal rings; direct sum decompositions
@article{CMUC_2003__44_4_a5,
     author = {P\v{r}{\'\i}hoda, Pavel},
     title = {Bases of minimal elements of some partially ordered free abelian groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {623--628},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062878},
     zbl = {1101.16010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a5/}
}
TY  - JOUR
AU  - Příhoda, Pavel
TI  - Bases of minimal elements of some partially ordered free abelian groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 623
EP  - 628
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a5/
LA  - en
ID  - CMUC_2003__44_4_a5
ER  - 
%0 Journal Article
%A Příhoda, Pavel
%T Bases of minimal elements of some partially ordered free abelian groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 623-628
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a5/
%G en
%F CMUC_2003__44_4_a5
Příhoda, Pavel. Bases of minimal elements of some partially ordered free abelian groups. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 623-628. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a5/